China Wholesale Good Quality Harmonic Motor Speed Reducer Mini Strain Wave Gear spurs gear

Item Description

Solution Description:

one. Flexspline is a hollow flanging regular cylinder construction.

2. The structure of the entire item is compact. The enter shaft is straight matched with the inner gap of the wave generator. They are connected by a flat important slot.

3. The connecting way is round spline mounted and adaptable output, Or it can also be utilised that flexible fastened and round spline output.

Benefits:

1. Large precision, large torque

2. Dedicated specialized staff can be on-the-go to give design solutions

3. Manufacturing facility immediate sales good workmanship durable high quality assurance

4. Product high quality problems have a 1-calendar year guarantee time, can be returned for substitution or restore

Firm profile:

 

HangZhou CZPT Technological innovation Co., Ltd. proven in 2014, is dedicated to the R & D plant of substantial-precision transmission parts. At current, the once-a-year manufacturing potential can achieve 45000 sets of harmonic reducers. We firmly believe in good quality first. All hyperlinks from raw supplies to finished items are strictly supervised and controlled, which gives a reliable basis for product good quality. Our merchandise are bought all more than the country and overseas.

The harmonic reducer and other substantial-precision transmission elements had been independently designed by the organization. Our company spends twenty% of its income every single year on the investigation and development of new systems in the business. There are 5 individuals in R & D.

Our edge is as under:

one.7 a long time of marketing knowledge

two. 5-person R & D crew to offer you with complex assistance

three. It is bought at house and abroad and exported to Turkey and Eire

4. The solution quality is certain with a 1-12 months guarantee

five. Products can be customized

Power manufacturing facility:

Our plant has an complete campus The variety of workshops is around three hundred Regardless of whether it’s from the production of raw resources and the procurement of raw materials to the inspection of finished goods, we’re carrying out it ourselves. There is a full production technique

HCS-I Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start quit The allowable highest of the average load torque Maximum torque is authorized in an instant Permit the highest pace to be entered Average input speed is permitted Again gap layout existence
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 three.eight .4 8.5 .9 6.8 .7 19.1 1.9 8000 3000 ≤30 10000
one hundred four.1 .4 eight.nine .nine 7.two .seven twenty two
14 50 6.2 .6 twenty.7 2.1 7.9 .seven forty.3 4.1 7000 3000 ≤30 15000
eighty nine .nine 27 2.7 twelve.seven 1.3 fifty four.1 five.5
100 9 .nine 32 3.three 12.7 1.3 sixty two.1 6.three
17 fifty eighteen.4 one.9 39 4 29.9 three 80.five eight.two 6500 3000 ≤30 15000
80 25.three 2.6 49.5 5 31 three.two a hundred.1 ten.two
one hundred 27.6 2.eight 62 6.3 forty five 4.6 124.2 12.seven
20 fifty 28.eight two.nine 64.four six.6 39 4 112.7 11.five 5600 3000 ≤30 15000
80 39.one 4 eighty five eight.8 54 5.five 146.1 14.9
one hundred forty six 4.7 94.3 9.six fifty six five.eight 169.one seventeen.2
120 46 four.seven a hundred 10.two 56 five.eight 169.1 seventeen.two
one hundred sixty forty six 4.seven 112 10.nine fifty six 5.eight 169.one 17.two
25 fifty 44.9 4.six 113 eleven.five 63 6.5 213.9 21.eight 4800 3000 ≤30 15000
eighty seventy two.five 7.four 158 16.one one hundred ten.2 293.three 29.nine
one hundred seventy seven.one seven.nine 181 eighteen.4 124 12.seven 326.6 33.3
one hundred twenty 77.one 7.nine 192 19.6 124 twelve.7 349.six 35.6
32 50 87.4 eight.nine 248 25.3 124 12.seven 439 44.8 4000 3000 ≤30 15000
eighty 135.seven thirteen.8 350 35.6 192 19.6 653 sixty six.6
one hundred 157.6 16.1 383 39.1 248 twenty five.three 744 seventy five.nine
one hundred twenty 157.6 sixteen.1 406 41.4 248 twenty five.3 789 80.five

HCG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start quit The allowable greatest of the common load torque Maximum torque is authorized in an instantaneous Let the optimum pace to be entered Typical input velocity is authorized Back gap design and style existence
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 eighty 3.8 .4 8.five .nine 6.8 .7 19.one one.9 8000 3000 ≤20 10000
a hundred 4.one .4 eight.nine .nine 7.two .7 20 2
14 50 seven .seven 23 2.3 9 .nine 46 four.7 10000 6500 ≤20 15000
80 ten 1 thirty three.one fourteen 1.4 61 six.2
one hundred 10 one 36 three.7 14 1.four 70 7.2
17 fifty 21 two.1 forty four four.5 34 three.4 ninety one nine 7500 5600 ≤20 20000
eighty 29 2.9 56 five.7 35 3.six 113 twelve
100 31 three.2 70 seven.two 51 five.2 143 15
20 50 33 3.three seventy three seven.4 44 four.5 127 thirteen 7000 4800 ≤20 2000
eighty 44 4.5 96 nine.eight sixty one six.2 165 seventeen
a hundred fifty two 5.three 107 10.nine 64 6.5 191 twenty
a hundred and twenty 52 five.three 113 11.5 64 six.five 191 twenty
a hundred and sixty 52 5.3 one hundred twenty twelve.two 64 six.5 191 20
25 50 51 five.2 127 13 seventy two 7.three 242 twenty five 5600 4000 ≤20 2000
80 82 eight.4 178 18 113 twelve 332 34
one hundred 87 8.nine 204 21 a hundred and forty 14 369 38
a hundred and twenty 87 8.nine 217 22 one hundred forty fourteen 395 forty
32 fifty 99 ten 281 29 one hundred forty 14 497 51 5600 3000 ≤20 2000
80 153 sixteen 395 forty 217 22 738 seventy five
one hundred 178 18 433 44 281 29 841 86
a hundred and twenty 178 18 459 forty seven 281 29 892 91

Exhibitions:
Application situation:

FQA:
Q: What must I offer when I pick a gearbox/velocity reducer?
A: The very best way is to offer the motor drawing with parameters. Our engineer will check out and advise the most suitable gearbox product for your reference.
Or you can also offer the under specification as well:
1) Sort, product, and torque.
two) Ratio or output speed
3) Operating issue and link strategy
four) Top quality and set up device name
5) Enter mode and enter velocity
six) Motor model product or flange and motor shaft measurement

US $285.7
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 ≤20 2000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 ≤20 2000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91
US $285.7
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 ≤20 2000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 ≤20 2000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91

The Difference Between Planetary Gears and Spur Gears

A spur gear is a type of mechanical drive that turns an external shaft. The angular velocity is proportional to the rpm and can be easily calculated from the gear ratio. However, to properly calculate angular velocity, it is necessary to know the number of teeth. Fortunately, there are several different types of spur gears. Here’s an overview of their main features. This article also discusses planetary gears, which are smaller, more robust, and more power-dense.
Planetary gears are a type of spur gear

One of the most significant differences between planetary gears and spurgears is the way that the two share the load. Planetary gears are much more efficient than spurgears, enabling high torque transfer in a small space. This is because planetary gears have multiple teeth instead of just one. They are also suitable for intermittent and constant operation. This article will cover some of the main benefits of planetary gears and their differences from spurgears.
While spur gears are more simple than planetary gears, they do have some key differences. In addition to being more basic, they do not require any special cuts or angles. Moreover, the tooth shape of spur gears is much more complex than those of planetary gears. The design determines where the teeth make contact and how much power is available. However, a planetary gear system will be more efficient if the teeth are lubricated internally.
In a planetary gear, there are three shafts: a sun gear, a planet carrier, and an external ring gear. A planetary gear is designed to allow the motion of one shaft to be arrested, while the other two work simultaneously. In addition to two-shaft operation, planetary gears can also be used in three-shaft operations, which are called temporary three-shaft operations. Temporary three-shaft operations are possible through frictional coupling.
Among the many benefits of planetary gears is their adaptability. As the load is shared between several planet gears, it is easier to switch gear ratios, so you do not need to purchase a new gearbox for every new application. Another major benefit of planetary gears is that they are highly resistant to high shock loads and demanding conditions. This means that they are used in many industries.
Gear

They are more robust

An epicyclic gear train is a type of transmission that uses concentric axes for input and output. This type of transmission is often used in vehicles with automatic transmissions, such as a Lamborghini Gallardo. It is also used in hybrid cars. These types of transmissions are also more robust than conventional planetary gears. However, they require more assembly time than a conventional parallel shaft gear.
An epicyclic gearing system has three basic components: an input, an output, and a carrier. The number of teeth in each gear determines the ratio of input rotation to output rotation. In some cases, an epicyclic gear system can be made with two planets. A third planet, known as the carrier, meshes with the second planet and the sun gear to provide reversibility. A ring gear is made of several components, and a planetary gear may contain many gears.
An epicyclic gear train can be built so that the planet gear rolls inside the pitch circle of an outer fixed gear ring, or “annular gear.” In such a case, the curve of the planet’s pitch circle is called a hypocycloid. When epicycle gear trains are used in combination with a sun gear, the planetary gear train is made up of both types. The sun gear is usually fixed, while the ring gear is driven.
Planetary gearing, also known as epicyclic gear, is more durable than other types of transmissions. Because planets are evenly distributed around the sun, they have an even distribution of gears. Because they are more robust, they can handle higher torques, reductions, and overhung loads. They are also more energy-dense and robust. In addition, planetary gearing is often able to be converted to various ratios.
Gear

They are more power dense

The planet gear and ring gear of a compound planetary transmission are epicyclic stages. One part of the planet gear meshes with the sun gear, while the other part of the gear drives the ring gear. Coast tooth flanks are used only when the gear drive works in reversed load direction. Asymmetry factor optimization equalizes the contact stress safety factors of a planetary gear. The permissible contact stress, sHPd, and the maximum operating contact stress (sHPc) are equalized by asymmetry factor optimization.
In addition, epicyclic gears are generally smaller and require fewer space than helical ones. They are commonly used as differential gears in speed frames and in looms, where they act as a Roper positive let off. They differ in the amount of overdrive and undergearing ratio they possess. The overdrive ratio varies from fifteen percent to forty percent. In contrast, the undergearing ratio ranges from 0.87:1 to 69%.
The TV7-117S turboprop engine gearbox is the first known application of epicyclic gears with asymmetric teeth. This gearbox was developed by the CZPT Corporation for the Ilyushin Il-114 turboprop plane. The TV7-117S’s gearbox arrangement consists of a first planetary-differential stage with three planet gears and a second solar-type coaxial stage with five planet gears. This arrangement gives epicyclic gears the highest power density.
Planetary gearing is more robust and power-dense than other types of gearing. They can withstand higher torques, reductions, and overhung loads. Their unique self-aligning properties also make them highly versatile in rugged applications. It is also more compact and lightweight. In addition to this, epicyclic gears are easier to manufacture than planetary gears. And as a bonus, they are much less expensive.

They are smaller

Epicyclic gears are small mechanical devices that have a central “sun” gear and one or more outer intermediate gears. These gears are held in a carrier or ring gear and have multiple mesh considerations. The system can be sized and speeded by dividing the required ratio by the number of teeth per gear. This process is known as gearing and is used in many types of gearing systems.
Planetary gears are also known as epicyclic gearing. They have input and output shafts that are coaxially arranged. Each planet contains a gear wheel that meshes with the sun gear. These gears are small and easy to manufacture. Another advantage of epicyclic gears is their robust design. They are easily converted into different ratios. They are also highly efficient. In addition, planetary gear trains can be designed to operate in multiple directions.
Another advantage of epicyclic gearing is their reduced size. They are often used for small-scale applications. The lower cost is associated with the reduced manufacturing time. Epicyclic gears should not be made on N/C milling machines. The epicyclic carrier should be cast and tooled on a single-purpose machine, which has several cutters cutting through material. The epicyclic carrier is smaller than the epicyclic gear.
Epicyclic gearing systems consist of three basic components: an input, an output, and a stationary component. The number of teeth in each gear determines the ratio of input rotation to output rotation. Typically, these gear sets are made of three separate pieces: the input gear, the output gear, and the stationary component. Depending on the size of the input and output gear, the ratio between the two components is greater than half.
Gear

They have higher gear ratios

The differences between epicyclic gears and regular, non-epicyclic gears are significant for many different applications. In particular, epicyclic gears have higher gear ratios. The reason behind this is that epicyclic gears require multiple mesh considerations. The epicyclic gears are designed to calculate the number of load application cycles per unit time. The sun gear, for example, is +1300 RPM. The planet gear, on the other hand, is +1700 RPM. The ring gear is also +1400 RPM, as determined by the number of teeth in each gear.
Torque is the twisting force of a gear, and the bigger the gear, the higher the torque. However, since the torque is also proportional to the size of the gear, bigger radii result in lower torque. In addition, smaller radii do not move cars faster, so the higher gear ratios do not move at highway speeds. The tradeoff between speed and torque is the gear ratio.
Planetary gears use multiple mechanisms to increase the gear ratio. Those using epicyclic gears have multiple gear sets, including a sun, a ring, and two planets. Moreover, the planetary gears are based on helical, bevel, and spur gears. In general, the higher gear ratios of epicyclic gears are superior to those of planetary gears.
Another example of planetary gears is the compound planet. This gear design has two different-sized gears on either end of a common casting. The large end engages the sun while the smaller end engages the annulus. The compound planets are sometimes necessary to achieve smaller steps in gear ratio. As with any gear, the correct alignment of planet pins is essential for proper operation. If the planets are not aligned properly, it may result in rough running or premature breakdown.

China Wholesale Good Quality Harmonic Motor Speed Reducer Mini Strain Wave Gear     spurs gearChina Wholesale Good Quality Harmonic Motor Speed Reducer Mini Strain Wave Gear     spurs gear
editor by czh 2023-01-17