China Standard OEM/ODM Injection Molding Precised Plastic Gears straight bevel gear

Product Description

OEM/ODM Injection Molding  Precised Plastic Gears– Plastic Injection Parts
 


HangZhou Stick Industry is a company has 10 years’ experience on plastic injection and has a pro engineer team

helping customers with any problem. We are 1 of leading ISO 9 shots Brand STK or Customized  Delivery Time  In about 30 days for new production  Packing  Standard export packing or customized  MOQ 1000 pcs FOB port HangZhou, China Shipment Air or Sea

Plastic Materials Applies

Material Name Features Applications
PP Lightweight, Heat Resistance, High Chemical Resistance, Scratch Resistance, Natural Waxy Appearance, Tough and Stiff, Low Cost Automobile (Bumpers, Covers, Trim), Bottles, Caps, Crates, Handles, Housings.
POM Strong, Rigid, Excellent Fatigue Resistance, Excellent Creep Resistance, Chemical Resistance, Moisture Resistance, Naturally Opaque White, Low/Medium Cost Bearings, Cams, Gears, Handles, Plumbing Components, Rollers, Rotors, Slide Xihu (West Lake) Dis.s, Valves
PC Very Tough, Temperature Resistance, Dimensional Stability, Transparent, High Cost Automobile (Panels, Lenses, Consoles), Bottles, Containers, Housings, Light Covers, Reflectors, Safety Helmets and Shields
PS Tough, Very High Chemical Resistance, Clear, Very High Cost Valves
ABS Strong, Flexible, Low Mold Shrinkage (Tight Tolerance), Chemical Resistance, Applicable for Electroplating, Naturally Opaque, Low/Medium Cost Automobile (Consoles, Panels, Trim, Vents), Boxes, Gauges, Housings, Inhalers, Toys
PA6 High Strength, Fatigue Resistance, Chemical Resistance, Low Creep, Low Friction, Almost Opaque/White, Medium/High Cost Bearings, Bushings, Gears, Rollers, Wheels
PA6/6 High Strength, Fatigue Resistance, Chemical Resistance, Low Creep, Low Friction, Almost Opaque/White, Medium/High Cost Handles, Levers, Small Housings, Zip Ties
PBT,PET Rigid, Heat Resistance, Chemical Resistance, Medium/High Cost Automobile (Filters, Handles, Pumps), Bearings, Cams, Electrical Components (Connectors, Sensors), Gears, Housings, Rollers, Switches, Valves
PVC Tough, Flexible, Flame Resistance, Transparent or Opaque, Low Cost Electrical Insulation, Household wares, Medical Tubing, Shoe Soles, Toys
HDPE Tough and Stiff, Excellent Chemical Resistance, Natural Waxy Appearance, Low Cost Chair Seats, Housings, Covers, Containers
PMMA Rigid, Brittle, Scratch Resistance, Transparent, Optical Clarity, Low/Medium Cost Display Stands, Knobs, Lenses, Light Housings, Panels, Reflectors, Signs, Shelves, Trays

Company Information

Our main production area is equiped with 40 molding machines of various size,
ranging from 80 tons to 1400 tons clamping pressure.

This provides us with teh capability to mold shot weights from 0.1 gram to over
10000 grams with flexible production runs. 

Plastic Injection Solution:

*  Precision Injection Molding: From design consultancy & prototype tooling to high-volume  world-class production

*  Parts are widely used: Industrial, Automotive, Electronics & Medical

Technical Skills – Development, Design Skills
*  Design Consultation & Assistance

*  Pro/E, CAD/CAM/CAE including CHINAMFG Works(TM) and mold flow analysis

*  Material Selection Assistance

*  Quick turn-around prototype support

*  Secondary Operations including machining, welding & assembly

Molding – High Precision, High Concern
*  Plastic Decorating: In-Mold Decorating (in-mold labeling), pad printing & hot stamping

*  40 Molding machines from 80TONS to 1400TONS

*  High precision molding from medical to fiber optics components

Secondary Operations – Value Added Service
*  Pad Printing

*  Sonic Welding

*  Assembly & Packaging

Plastic Injection Equipment List

Equipment QTY Origin
Injection Machine 40 SETS ZheJiang / China
CNC Machine Center 5 SETS ZheJiang / China
EDM 6 SETS China
EDM Mirror 1 SETS Japan
Wire Cutting 5 SETS ZheJiang
Grinding Machine 3 SETS China
Milling Machine 10 SETS China
Drilling Machine 15 SETS China

Quality Testing Facility

Packing & Delivery

FAQ:
 

Q1: Are you trading company or manufacturer ?

A: We are factory. We are experienced manufcturer, have our own factory and warehouse.

Q2: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-30 days for the OEM Parts, it is according to quantity.

Q3: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q4: What is your terms of payment ?

A: Our preferntial payment term is T/T 
     Mould Tooling : 50% down payment, 50% balance against the sample approval. 
     Mass Production: 50% down payment , 50% against the B/L copy 

Q5: What do we need if you want a quote?

A: Please kindly send us your 2D & 3D drawing of your product. The need the detail specifications as follows :
    1. Material 
    2. Surface treatment 
    3. Estimated production volume

Q6: How do I know about the production ?

A: We will double confirm your requirements and send you the samples before the mass production . 
     During the mass production , we will keep you informed of any progress.Besides, we will do 100% quality inspection 
     before shipment

Q7:How do we know about the deliery status ?

A: We will immediately inform you the tracking number once we get it from shipping agent. Besides, we will update the latest shipping information. 

 

Application: Motor, Electric Cars, Machinery, Car
Material: ABS, PC, PS, PP, PVC, TPR, TPU, TPE, etc
Finish: Color Painting, Texture, Silk Printing
Certificate: FDA, RoHS
Mould Leadtime: 3-6 Weeks
Mould Life: 100, 000-1, 000, 000 Shots
Customization:
Available

|

Customized Request

plastic gear

How do you choose the right type of plastic material for specific applications?

Choosing the right type of plastic material for specific applications requires careful consideration of various factors. Here’s a detailed explanation of the process:

1. Identify Application Requirements: Begin by understanding the specific requirements of the application. Consider factors such as temperature range, chemical exposure, mechanical stress, electrical properties, dimensional stability, and regulatory compliance. This initial assessment will help narrow down the suitable plastic material options.

2. Research Plastic Material Properties: Conduct thorough research on different types of plastic materials and their properties. Consider factors such as mechanical strength, thermal stability, chemical resistance, electrical conductivity, impact resistance, UV stability, and food safety approvals. Plastic material datasheets and technical resources from manufacturers can provide valuable information.

3. Evaluate Material Compatibility: Assess the compatibility of the plastic material with the surrounding environment and other components in the system. Consider the potential for chemical reactions, galvanic corrosion, thermal expansion, and any specific requirements for mating surfaces or interfaces. Ensure the selected material is compatible with the intended operating conditions.

4. Consider Manufacturing Process: Evaluate the manufacturing process involved in producing the desired component or product. Different plastic materials may have specific requirements or limitations for processes such as injection molding, extrusion, blow molding, or machining. Ensure the chosen material is compatible with the selected manufacturing method and can meet the desired quality and production efficiency.

5. Assess Cost and Availability: Consider the cost and availability of the plastic material. Some specialty or high-performance plastics may be more expensive or have limited availability compared to more common materials. Evaluate the cost-effectiveness and feasibility of using the selected material within the project’s budget and timeline.

6. Consult with Material Experts: If necessary, consult with material experts, engineers, or suppliers who have expertise in plastic materials. They can provide valuable insights and recommendations based on their experience and knowledge of specific applications. Their input can help ensure the optimal material selection for the intended use.

7. Perform Prototype and Testing: Before finalizing the material selection, it’s advisable to produce prototypes or conduct testing using the chosen plastic material. This allows for verification of the material’s performance, dimensional accuracy, strength, durability, and other critical factors. Iterative testing and evaluation can help refine the material selection process if needed.

By following these steps and considering the application requirements, material properties, compatibility, manufacturing process, cost, and expert advice, it’s possible to choose the most appropriate plastic material for specific applications. Proper material selection is crucial for ensuring optimal performance, longevity, and safety in various industries and products.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

Can plastic gears replace metal gears in certain applications?

Yes, plastic gears can replace metal gears in certain applications. Here’s a detailed explanation:

Plastic gears offer a range of advantages that make them suitable alternatives to metal gears in specific scenarios. Some of the factors that determine whether plastic gears can replace metal gears include the application requirements, operating conditions, load capacity, and desired performance characteristics.

Advantages of Plastic Gears:

  • Lightweight: Plastic gears are significantly lighter than metal gears, making them suitable for applications where weight reduction is important. This can lead to energy efficiency, reduced inertia, and lower wear on supporting components.
  • Low Noise and Vibration: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals. Plastic gears can be a suitable choice for applications in corrosive environments where metal gears may suffer from degradation.
  • Self-Lubrication: Some plastic materials used for gear manufacturing have self-lubricating properties. This reduces friction and wear between gear teeth, eliminating the need for external lubrication and simplifying maintenance requirements.
  • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production. Plastic materials are often less expensive than metals, and the manufacturing processes for plastic gears can be more efficient.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. They can be molded into complex shapes, allowing for custom gear profiles and tooth geometries, resulting in optimized performance and efficiency for specific applications.

Limitations of Plastic Gears:

  • High Torque and Load Capacity: Plastic gears may not have the same torque and load capacity as metal gears. In applications requiring high torque or heavy loads, metal gears may be more suitable due to their higher strength and durability.
  • High Temperatures: Plastic gears have temperature limitations depending on the chosen material. In applications with high operating temperatures, metal gears that can withstand the heat may be necessary.
  • Precision and Positioning: Plastic gears may not offer the same level of precision and positioning accuracy as metal gears. Applications that require tight tolerances and precise gear meshing may still require metal gears.

In summary, plastic gears can replace metal gears in certain applications where their advantages align with the specific requirements and operating conditions. It’s crucial to carefully evaluate the application needs, load capacity, temperature range, and other factors to determine if plastic gears are suitable replacements for metal gears.

China Standard OEM/ODM Injection Molding Precised Plastic Gears straight bevel gearChina Standard OEM/ODM Injection Molding Precised Plastic Gears straight bevel gear
editor by CX 2023-11-01